2024年12月26日くいなちゃん


1~6の目が出るサイコロを使って、1~10の乱数を作ることはできますでしょうか?

問題

等しい確率で1~6の目が出る一般的なサイコロを使って、1~10の乱数を作りなさい。

1~10の乱数が欲しいことは多々ありますので、挑戦してみましょう!

1写像

まず、サイコロ1つを1回だけ振って、1~10の乱数が作れるかを考えてみます。 これは1~6の目を1~10の乱数に対応付けることになるため、目のパターンが足りず不可能であることが分かります(図1-1)。
サイコロを1回振って1~10の乱数を作る
図1-1: サイコロを1回振って1~10の乱数を作る
従って、サイコロを2つ以上使うか、2回以上振る必要があります。
では、サイコロを2つ以上、もしくは2回以上振って、ちょうど1~10の乱数に均等に対応させることはできるでしょうか。 サイコロを回振ったとき、出る目のパターンは通りになります。 しかし、6を何乗しても一の位は6のままですので、1~10に対応させようとすると常に6余ります(図1-2)。
サイコロをn回振って1~10の乱数を作る
図1-2: サイコロをn回振って1~10の乱数を作る
よって、これらのパターンを1~10の乱数に均等に対応させることは不可能です。
一つの対処策としては、余った6パターンが出たときにサイコロをもう一度振ることが考えられます。 例えばサイコロを2回振り、1回目に6が出たらもう一度振り直すとします。 このとき図1-3のようなパターンで割り振ると、1~10の乱数になります。
サイコロを2回振って1~10の乱数を作る
図1-3: サイコロを2回振って1~10の乱数を作る
このように余った6パターンをもう一度振り直すことで、1~10の乱数が作れます。 ただしこの場合、6/36の確率でサイコロを振り直さなければならないので、運が悪ければ無限にサイコロを振る羽目になります。

2無限級数の和

別の方法として無限級数の和を用いる方法も考えられます。 目の合計が9以外になるまで2個のサイコロを振り続けると、サイコロを振った回数が偶数になる確率は、なんと1/10となります(図2-1)。
無限級数の和で1/10を作る
図2-1: 無限級数の和で1/10を作る
ただこの方法で1/10の確率を作り出すことはできますが、このままでは1~10の乱数にはなりません。 そこで1/10が出なければ同様に、1/9、1/8、1/7、…の確率を作り出すことで、結果的に1~10の乱数を等しい確率で生成することができます(図2-2)。
無限級数の和で1~10を作る
図2-2: 無限級数の和で1~10を作る
しかし明らかに煩雑な上、振り直す回数も多くなるので、この方法は有用ではなさそうです。

3サイコロを合体させる

複数のサイコロを接着剤で接合させることで、物理的に1~10が作れないかを考えてみました。
が、思いつきませんでした(図3-1)。
接合したサイコロで1~10を作る(失敗)
図3-1: 接合したサイコロで1~10を作る(失敗)

4結論

結局、これが一番良さそうです(図4-1)。
サイコロで1~10を作る
図4-1: サイコロで1~10を作る
1735209013jaf